Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Hepatol Commun ; 8(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38437061

RESUMO

BACKGROUND: Alcohol-associated hepatitis (AH) is one of the clinical presentations of alcohol-associated liver disease. AH has poor prognosis, and corticosteroids remain the mainstay of drug therapy. However, ~40% of patients do not respond to this treatment, and the mechanisms underlying the altered response to corticosteroids are not understood. The current study aimed to identify changes in hepatic protein expression associated with responsiveness to corticosteroids and prognosis in patients with AH. METHODS: Patients with AH were enrolled based on the National Institute on Alcohol Abuse and Alcoholism inclusion criteria for acute AH and further confirmed by a diagnostic liver biopsy. Proteomic analysis was conducted on liver samples acquired from patients with AH grouped as nonresponders (AH-NR, n = 7) and responders (AH-R, n = 14) to corticosteroids, and nonalcohol-associated liver disease controls (n = 10). The definition of responders was based on the clinical prognostic model, the Lille Score, where a score < 0.45 classified patients as AH-R and a score > 0.45 as AH-NR. Primary outcomes used to assess steroid response were Lille Score (eg, improved liver function) and survival at 24 weeks. RESULTS: Reduced levels of the glucocorticoid receptor and its transcriptional co-activator, glucocorticoid modulatory element-binding protein 2, were observed in the hepatic proteome of AH-NR versus AH-R. The corticosteroid metabolizing enzyme, 11-beta-hydroxysteroid dehydrogenase 1, was increased in AH-NR versus AH-R along with elevated mitochondrial DNA repair enzymes, while several proteins of the heat shock pathway were reduced. Analysis of differentially expressed proteins in AH-NR who survived 24 weeks relative to AH-NR nonsurvivors revealed several protein expression changes, including increased levels of acute phase proteins, elevated coagulation factors, and reduced mast cell markers. CONCLUSIONS: This study identified hepatic proteomic changes that may predict responsiveness to corticosteroids and mortality in patients with AH.


Assuntos
Hepatite Alcoólica , Hepatopatias Alcoólicas , Humanos , Proteínas de Choque Térmico , Glucocorticoides/uso terapêutico , Proteômica , Esteroides , Hepatite Alcoólica/diagnóstico , Hepatite Alcoólica/tratamento farmacológico
2.
Am J Pathol ; 194(1): 71-84, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37925018

RESUMO

Alcohol-associated liver disease (ALD) is a serious public health problem with limited pharmacologic options. The goal of the current study was to investigate the efficacy of pharmacologic inhibition of soluble epoxide hydrolase (sEH), an enzyme involved in lipid metabolism, in experimental ALD, and to examine the underlying mechanisms. C57BL/6J male mice were subjected to acute-on-chronic ethanol (EtOH) feeding with or without the sEH inhibitor 4-[[trans-4-[[[[4-trifluoromethoxy phenyl]amino]carbonyl]-amino]cyclohexyl]oxy]-benzoic acid (TUCB). Liver injury was assessed by multiple end points. Liver epoxy fatty acids and dihydroxy fatty acids were measured by targeted metabolomics. Whole-liver RNA sequencing was performed, and free modified RNA bases were measured by mass spectrometry. EtOH-induced liver injury was ameliorated by TUCB treatment as evidenced by reduced plasma alanine aminotransferase levels and was associated with attenuated alcohol-induced endoplasmic reticulum stress, reduced neutrophil infiltration, and increased numbers of hepatic M2 macrophages. TUCB altered liver epoxy and dihydroxy fatty acids and led to a unique hepatic transcriptional profile characterized by decreased expression of genes involved in apoptosis, inflammation, fibrosis, and carcinogenesis. Several modified RNA bases were robustly changed by TUCB, including N6-methyladenosine and 2-methylthio-N6-threonylcarbamoyladenosine. These findings show the beneficial effects of sEH inhibition by TUCB in experimental EtOH-induced liver injury, warranting further mechanistic studies to explore the underlying mechanisms, and highlighting the translational potential of sEH as a drug target for this disease.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Hepatopatias Alcoólicas , Camundongos , Animais , Masculino , Epóxido Hidrolases/genética , Epóxido Hidrolases/metabolismo , Transcriptoma , Camundongos Endogâmicos C57BL , Hepatopatias Alcoólicas/genética , Ácidos Graxos , Etanol , RNA
3.
Biology (Basel) ; 12(5)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37237453

RESUMO

Alcohol-associated liver disease (ALD) is the most common chronic liver disease and carries a significant healthcare burden. ALD has no long-term treatment options aside from abstinence, and the mechanisms that contribute to its pathogenesis are not fully understood. This study aimed to investigate the role of formyl peptide receptor 2 (FPR2), a receptor for immunomodulatory signals, in the pathogenesis of ALD. WT and Fpr2-/- mice were exposed to chronic-binge ethanol administration and subsequently assessed for liver injury, inflammation, and markers of regeneration. The differentiation capacity of liver macrophages and the oxidative burst activity of neutrophils were also examined. Compared to WT, Fpr2-/- mice developed more severe liver injury and inflammation and had compromised liver regeneration in response to ethanol administration. Fpr2-/- mice had fewer hepatic monocyte-derived restorative macrophages, and neutrophils isolated from Fpr2-/- mice had diminished oxidative burst capacity. Fpr2-/- MoMF differentiation was restored when co-cultured with WT neutrophils. Loss of FPR2 led to exacerbated liver damage via multiple mechanisms, including abnormal immune responses, indicating the crucial role of FPR2 in ALD pathogenesis.

4.
FASEB J ; 37(1): e22705, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36520060

RESUMO

Alcohol-associated liver disease (ALD) is a major health problem with limited effective treatment options. Alcohol-associated hepatitis (AH) is a subset of severe ALD with a high rate of mortality due to infection, severe inflammation, and ultimately multi-organ failure. There is an urgent need for novel therapeutic approaches to alleviate the human suffering associated with this condition. Resolvin D1 (RvD1) promotes the resolution of inflammation and regulates immune responses. The current study aimed to test the therapeutic efficacy and mechanisms of RvD1-mediated effects on liver injury and inflammation in an experimental animal model that mimics severe AH in humans. Our data demonstrated that mice treated with RvD1 had attenuated liver injury and inflammation caused by EtOH and LPS exposure by limiting hepatic neutrophil accumulation and decreasing hepatic levels of pro-inflammatory cytokines. In addition, RvD1 treatment attenuated hepatic pyroptosis, an inflammatory form of cell death, via downregulation of pyroptosis-related genes such as GTPase family member b10 and guanylate binding protein 2, and reducing cleavage of caspase 11 and gasdermin-D. In vitro experiments with primary mouse hepatocytes and bone marrow-derived macrophages confirmed the effectiveness of RvD1 in the attenuation of pyroptosis. In summary, our data demonstrated that RvD1 treatment provided beneficial effects against liver injury and inflammation in an experimental animal model recapitulating features of severe AH in humans. Our results suggest that RvD1 may be a novel adjunct strategy to traditional therapeutic options for AH patients.


Assuntos
Etanol , Lipopolissacarídeos , Humanos , Camundongos , Animais , Lipopolissacarídeos/toxicidade , Etanol/toxicidade , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/uso terapêutico , Ácidos Docosa-Hexaenoicos/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Fígado/metabolismo
5.
World J Gastroenterol ; 28(36): 5280-5299, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36185629

RESUMO

Alcohol-associated liver disease (ALD) is a common chronic liver disease and major contributor to liver disease-related deaths worldwide. Despite its pre-valence, there are few effective pharmacological options for the severe stages of this disease. While much pre-clinical research attention is paid to drug development in ALD, many of these experimental therapeutics have limitations such as poor pharmacokinetics, poor efficacy, or off-target side effects due to systemic administration. One means of addressing these limitations is through liver-targeted drug delivery, which can be accomplished with different platforms including liposomes, polymeric nanoparticles, exosomes, bacteria, and adeno-associated viruses, among others. These platforms allow drugs to target the liver passively or actively, thereby reducing systemic circulation and increasing the 'effective dose' in the liver. While many studies, some clinical, have applied targeted delivery systems to other liver diseases such as viral hepatitis or hepatocellular carcinoma, only few have investigated their efficacy in ALD. This review provides basic information on these liver-targeting drug delivery platforms, including their benefits and limitations, and summarizes the current research efforts to apply them to the treatment of ALD in rodent models. We also discuss gaps in knowledge in the field, which when addressed, may help to increase the efficacy of novel therapies and better translate them to humans.


Assuntos
Hepatopatias Alcoólicas , Neoplasias Hepáticas , Sistemas de Liberação de Medicamentos , Humanos , Lipossomos/uso terapêutico , Hepatopatias Alcoólicas/terapia , Neoplasias Hepáticas/tratamento farmacológico
6.
Am J Pathol ; 192(7): 1066-1082, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35490715

RESUMO

Alcohol-associated liver disease is a global health care burden, with alcohol-associated cirrhosis (AC) and alcohol-associated hepatitis (AH) being two clinical manifestations with poor prognosis. The limited efficacy of standard of care for AC and AH highlights a need for therapeutic targets and strategies. The current study aimed to address this need through the identification of hepatic proteome and phosphoproteome signatures of AC and AH. Proteomic and phosphoproteomic analyses were conducted on explant liver tissue (test cohort) and liver biopsies (validation cohort) from patients with AH. Changes in protein expression across AH severity and similarities and differences in AH and AC hepatic proteome were analyzed. Significant alterations in multiple proteins involved in various biological processes were observed in both AC and AH, including elevated expression of transcription factors involved in fibrogenesis (eg, Yes1-associated transcriptional regulator). Another finding was elevated levels of hepatic albumin (ALBU) concomitant with diminished ALBU phosphorylation, which may prevent ALBU release, leading to hypoalbuminemia. Furthermore, altered expression of proteins related to neutrophil function and chemotaxis, including elevated myeloperoxidase, cathelicidin antimicrobial peptide, complement C3, and complement C5 were observed in early AH, which declined at later stages. Finally, a loss in expression of mitochondria proteins, including enzymes responsible for the synthesis of cardiolipin was observed. The current study identified hepatic protein signatures of AC and AH as well as AH severity, which may facilitate the development of therapeutic strategies.


Assuntos
Hepatite Alcoólica , Hepatopatias Alcoólicas , Hepatite Alcoólica/patologia , Humanos , Cirrose Hepática Alcoólica/complicações , Hepatopatias Alcoólicas/patologia , Fosfoproteínas , Proteoma , Proteômica
7.
Front Pharmacol ; 12: 711590, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34531743

RESUMO

Alcohol-associated liver disease (ALD) is the leading cause of liver disease worldwide, and alcohol-associated hepatitis (AH), a severe form of ALD, is a major contributor to the mortality and morbidity due to ALD. Many factors modulate susceptibility to ALD development and progression, including nutritional factors such as dietary fatty acids. Recent work from our group and others showed that modulation of dietary or endogenous levels of n6-and n3-polyunsaturated fatty acids (PUFAs) can exacerbate or attenuate experimental ALD, respectively. In the current study, we interrogated the effects of endogenous n3-PUFA enrichment in a mouse model which recapitulates features of early human AH using transgenic fat-1 mice which endogenously convert n6-PUFAs to n3-PUFAs. Male wild type (WT) and fat-1 littermates were provided an ethanol (EtOH, 5% v/v)-containing liquid diet for 10 days, then administered a binge of EtOH (5 g/kg) by oral gavage on the 11th day, 9 h prior to sacrifice. In WT mice, EtOH treatment resulted in liver injury as determined by significantly elevated plasma ALT levels, whereas in fat-1 mice, EtOH caused no increase in this biomarker. Compared to their pair-fed controls, a significant EtOH-mediated increase in liver neutrophil infiltration was observed also in WT, but not fat-1 mice. The hepatic expression of several cytokines and chemokines, including Pai-1, was significantly lower in fat-1 vs WT EtOH-challenged mice. Cultured bone marrow-derived macrophages isolated from fat-1 mice expressed less Pai-1 and Cxcl2 (a canonical neutrophil chemoattractant) mRNA compared to WT when stimulated with lipopolysaccharide. Further, we observed decreased pro-inflammatory M1 liver tissue-resident macrophages (Kupffer cells, KCs), as well as increased liver T regulatory cells in fat-1 vs WT EtOH-fed mice. Taken together, our data demonstrated protective effects of endogenous n3-PUFA enrichment on liver injury caused by an acute-on-chronic EtOH exposure, a paradigm which recapitulates human AH, suggesting that n3-PUFAs may be a viable nutritional adjuvant therapy for this disease.

8.
Hepatol Commun ; 5(6): 947-960, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34141982

RESUMO

Alcohol-associated liver disease (ALD) is a spectrum of liver disorders ranging from steatosis to steatohepatitis, fibrosis, and cirrhosis. Alcohol-associated hepatitis (AH) is an acute and often severe form of ALD with substantial morbidity and mortality. The mechanisms and mediators of ALD progression and severity are not well understood, and effective therapeutic options are limited. Various bioactive lipid mediators have recently emerged as important factors in ALD pathogenesis. The current study aimed to examine alterations in linoleic acid (LA)-derived lipid metabolites in the plasma of individuals who are heavy drinkers and to evaluate associations between these molecules and markers of liver injury and systemic inflammation. Analysis of plasma LA-derived metabolites was performed on 66 individuals who were heavy drinkers and 29 socially drinking but otherwise healthy volunteers. Based on plasma alanine aminotransferase (ALT) levels, 15 patients had no liver injury (ALT ≤ 40 U/L), 33 patients had mild liver injury (ALT > 40 U/L), and 18 were diagnosed with moderate AH (mAH) (Model for End-Stage Liver Disease score <20). Lipoxygenase-derived LA metabolites (13-hydroxy-octadecadienoic acid [13-HODE] and 13-oxo-octadecadienoic acid) were markedly elevated only in patients with mAH. The cytochrome P450-derived LA epoxides 9,10-epoxy-octadecenoic acid (9,10-EpOME) and 12,13-EpOME were decreased in all patients regardless of the presence or absence of liver injury. LA-derived diols 9,10-dihydroxy-octadecenoic acid (9,10-DiHOME) and 12,13-DiHOME as well as the corresponding diol/epoxide ratio were elevated in the mAH group, specifically compared to patients with mild liver injury. We found that 13-HODE and 12,13-EpOME (elevated and decreased, respectively) in combination with elevated interleukin-1ß as independent predictors can effectively predict altered liver function as defined by elevated bilirubin levels. Conclusion: Specific changes in LA metabolites in individuals who are heavy drinkers can distinguish individuals with mAH from those with mild ALD.

9.
Int J Mol Sci ; 22(4)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557303

RESUMO

Chronic alcohol consumption leads to disturbances in intestinal function which can be exacerbated by inflammation and modulated by different factors, e.g., polyunsaturated fatty acids (PUFAs). The mechanisms underlying these alterations are not well understood. In this study, RNA-seq analysis was performed on ileum tissue from WT and fat-1 transgenic mice (which have elevated endogenous n-3 PUFAs). Mice were chronically fed ethanol (EtOH) and challenged with a single lipopolysaccharide (LPS) dose to induce acute systemic inflammation. Both WT and fat-1 mice exhibited significant ileum transcriptome changes following EtOH + LPS treatment. Compared to WT, fat-1 mice had upregulated expression of genes associated with cell cycle and xenobiotic metabolism, while the expression of pro-inflammatory cytokines and pro-fibrotic genes was decreased. In response to EtOH + LPS, fat-1 mice had an increased expression of genes related to antibacterial B cells (APRIL and IgA), as well as an elevation in markers of pro-restorative macrophages and γδ T cells that was not observed in WT mice. Our study significantly expands the knowledge of regulatory mechanisms underlying intestinal alterations due to EtOH consumption and inflammation and identifies the beneficial transcriptional effects of n-3 PUFAs, which may serve as a viable nutritional intervention for intestinal damage resulting from excessive alcohol consumption.


Assuntos
Etanol/toxicidade , Ácidos Graxos Dessaturases/fisiologia , Ácidos Graxos Ômega-3/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Íleo/metabolismo , Inflamação/metabolismo , Animais , Depressores do Sistema Nervoso Central/toxicidade , Perfilação da Expressão Gênica , Humanos , Íleo/efeitos dos fármacos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/genética , Masculino , Camundongos , Camundongos Transgênicos
10.
FASEB J ; 35(2): e21377, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33481293

RESUMO

Alcohol-associated liver disease (ALD) is a major human health issue for which there are limited treatment options. Experimental evidence suggests that nutrition plays an important role in ALD pathogenesis, and specific dietary fatty acids, for example, n6 or n3-PUFAs, may exacerbate or attenuate ALD, respectively. The purpose of the current study was to determine whether the beneficial effects of n3-PUFA enrichment in ALD were mediated, in part, by improvement in Wnt signaling. Wild-type (WT) and fat-1 transgenic mice (that endogenously convert n6-PUFAs to n3) were fed ethanol (EtOH) for 6 weeks followed by a single LPS challenge. fat-1 mice had less severe liver damage than WT littermates as evidenced by reduced plasma alanine aminotransferase, hepatic steatosis, liver tissue neutrophil infiltration, and pro-inflammatory cytokine expression. WT mice had a greater downregulation of Axin2, a key gene in the Wnt pathway, than fat-1 mice in response to EtOH and LPS. Further, there were significant differences between WT and fat-1 EtOH+LPS-challenged mice in the expression of five additional genes linked to the Wnt signaling pathway, including Apc, Fosl1/Fra-1, Mapk8/Jnk-1, Porcn, and Nkd1. Compared to WT, primary hepatocytes isolated from fat-1 mice exhibited more effective Wnt signaling and were more resistant to EtOH-, palmitic acid-, or TNFα-induced cell death. Further, we demonstrated that the n3-PUFA-derived lipid mediators, resolvins D1 and E1, can regulate hepatocyte expression of several Wnt-related genes that were differentially expressed between WT and fat-1 mice. These data demonstrate a novel mechanism by which n3-PUFAs can ameliorate ALD.


Assuntos
Ácidos Graxos Ômega-3/metabolismo , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/prevenção & controle , Substâncias Protetoras/metabolismo , Via de Sinalização Wnt , Animais , Células Cultivadas , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Etanol/efeitos adversos , Ácidos Graxos Dessaturases/deficiência , Ácidos Graxos Dessaturases/genética , Feminino , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Inflamação/genética , Lipopolissacarídeos/efeitos adversos , Hepatopatias Alcoólicas/etiologia , Hepatopatias Alcoólicas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/genética
11.
Front Physiol ; 12: 812882, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35153819

RESUMO

Alcohol-associated liver disease (ALD) is a prevalent liver disorder and significant global healthcare burden with limited effective therapeutic options. The gut-liver axis is a critical factor contributing to susceptibility to liver injury due to alcohol consumption. In the current study, we tested whether human beta defensin-2 (hBD-2), a small anti-microbial peptide, attenuates experimental chronic ALD. Male C57Bl/6J mice were fed an ethanol (EtOH)-containing diet for 6 weeks with daily administration of hBD-2 (1.2 mg/kg) by oral gavage during the final week. Two independent cohorts of mice with distinct baseline gut microbiota were used. Oral hBD-2 administration attenuated liver injury in both cohorts as determined by decreased plasma ALT activity. Notably, the degree of hBD-2-mediated reduction of EtOH-associated liver steatosis, hepatocellular death, and inflammation was different between cohorts, suggesting microbiota-specific mechanisms underlying the beneficial effects of hBD-2. Indeed, we observed differential mechanisms of hBD-2 between cohorts, which included an induction of hepatic and small intestinal IL-17A and IL-22, as well as an increase in T regulatory cell abundance in the gut and mesenteric lymph nodes. Lastly, hBD-2 modulated the gut microbiota composition in EtOH-fed mice in both cohorts, with significant decreases in multiple genera including Barnesiella, Parabacteroides, Akkermansia, and Alistipes, as well as altered abundance of several bacteria within the family Ruminococcaceae. Collectively, our results demonstrated a protective effect of hBD-2 in experimental ALD associated with immunomodulation and microbiota alteration. These data suggest that while the beneficial effects of hBD-2 on liver injury are uniform, the specific mechanisms of action are associated with baseline microbiota.

12.
Sci Rep ; 10(1): 19930, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33199802

RESUMO

The intestine interacts with many factors, including dietary components and ethanol (EtOH), which can impact intestinal health. Previous studies showed that different types of dietary fats can modulate EtOH-induced changes in the intestine; however, mechanisms underlying these effects are not completely understood. Here, we examined intestinal transcriptional responses to EtOH in WT and transgenic fat-1 mice (which endogenously convert n6 to n3 polyunsaturated fatty acids [PUFAs]) to identify novel genes and pathways involved in EtOH-associated gut pathology and discern the impact of n3 PUFA enrichment. WT and fat-1 mice were chronically fed EtOH, and ileum RNA-seq and bioinformatic analyses were performed. EtOH consumption led to a marked down-regulation of genes encoding digestive and xenobiotic-metabolizing enzymes, and transcription factors involved in developmental processes and tissue regeneration. Compared to WT, fat-1 mice exhibited a markedly plastic transcriptome response to EtOH. Cell death, inflammation, and tuft cell markers were downregulated in fat-1 mice in response to EtOH, while defense responses and PPAR signaling were upregulated. This transcriptional reprogramming may contribute to the beneficial effects of n3 PUFAs on EtOH-induced intestinal pathology. In summary, our study provides a reference dataset of the intestinal mucosa transcriptional responses to chronic EtOH exposure for future hypothesis-driven mechanistic studies.


Assuntos
Caderinas/fisiologia , Gorduras na Dieta/administração & dosagem , Etanol/farmacologia , Ácidos Graxos Ômega-3/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Animais , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/crescimento & desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
13.
Biology (Basel) ; 9(6)2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32545637

RESUMO

Emerging evidence suggests that soluble epoxide hydrolase (sEH) inhibition is a valuable therapeutic strategy for the treatment of numerous diseases, including those of the liver. sEH rapidly degrades cytochrome P450-produced epoxygenated lipids (epoxy-fatty acids), which are synthesized from omega-3 and omega-6 polyunsaturated fatty acids, that generally exert beneficial effects on several cellular processes. sEH hydrolysis of epoxy-fatty acids produces dihydroxy-fatty acids which are typically less biologically active than their parent epoxide. Efforts to develop sEH inhibitors have made available numerous compounds that show therapeutic efficacy and a wide margin of safety in a variety of different diseases, including non-alcoholic fatty liver disease, liver fibrosis, portal hypertension, and others. This review summarizes research efforts which characterize the applications, underlying effects, and molecular mechanisms of sEH inhibitors in these liver diseases and identifies gaps in knowledge for future research.

14.
Alcohol ; 83: 105-114, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31129175

RESUMO

The symposium "Mechanisms, Biomarkers and Targets for Therapy in Alcohol-associated Liver Injury: From Genetics to Nutrition" was held at the 19th Congress of International Society for Biomedical Research on Alcoholism on September 13th, 2018 in Kyoto, Japan. The goal of the symposium was to discuss the importance of genetics and nutrition in alcoholic liver disease (ALD) development from mechanistic and therapeutic perspectives. The following is a summary of this session addressing the gene polymorphisms in ALD, the role of zinc in gut-liver axis perturbations associated with ALD, highlighting the importance of dietary fat in ALD pathogenesis, the hepatic n6 and n3 PUFA oxylipin pattern associated with ethanol-induced liver injury, and finally deliberating on new biomarkers for alcoholic hepatitis and their implications for diagnosis and therapy. This summary of the symposium will benefit junior and senior faculty currently investigating alcohol-induced organ pathology as well as undergraduate, graduate, and post-graduate students and fellows.


Assuntos
Biomarcadores/análise , Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/fisiopatologia , Fenômenos Fisiológicos da Nutrição/fisiologia , Animais , Dieta , Gorduras na Dieta , Hepatite Alcoólica , Humanos , Metabolismo dos Lipídeos/genética , Fígado/química , Fígado/metabolismo , Hepatopatias Alcoólicas/terapia , Camundongos , Oxilipinas/análise , Zinco
15.
J Lipid Res ; 60(12): 2034-2049, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31586017

RESUMO

Ethanol (EtOH)-induced alterations in intestinal homeostasis lead to multi-system pathologies, including liver injury. ω-6 PUFAs exert pro-inflammatory activity, while ω-3 PUFAs promote anti-inflammatory activity that is mediated, in part, through specialized pro-resolving mediators [e.g., resolvin D1 (RvD1)]. We tested the hypothesis that a decrease in the ω-6:ω-3 PUFA ratio would attenuate EtOH-mediated alterations in the gut-liver axis. ω-3 FA desaturase-1 (fat-1) mice, which endogenously increase ω-3 PUFA levels, were protected against EtOH-mediated downregulation of intestinal tight junction proteins in organoid cultures and in vivo. EtOH- and lipopolysaccharide-induced expression of INF-γ, Il-6, and Cxcl1 was attenuated in fat-1 and WT RvD1-treated mice. RNA-seq of ileum tissue revealed upregulation of several genes involved in cell proliferation, stem cell renewal, and antimicrobial defense (including Alpi and Leap2) in fat-1 versus WT mice fed EtOH. fat-1 mice were also resistant to EtOH-mediated downregulation of genes important for xenobiotic/bile acid detoxification. Further, gut microbiome and plasma metabolomics revealed several changes in fat-1 versus WT mice that may contribute to a reduced inflammatory response. Finally, these data correlated with a significant reduction in liver injury. Our study suggests that ω-3 PUFA enrichment or treatment with resolvins can attenuate the disruption in intestinal homeostasis caused by EtOH consumption and systemic inflammation with a concomitant reduction in liver injury.


Assuntos
Etanol/efeitos adversos , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia , Animais , Ácidos e Sais Biliares/metabolismo , Fezes/química , Feminino , Mucosa Intestinal/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL
16.
Microrna ; 8(1): 43-60, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30068287

RESUMO

BACKGROUND: Development of the mammalian palate is dependent on precise, spatiotemporal expression of a panoply of genes. MicroRNAs (miRNAs), the largest family of noncoding RNAs, function as crucial modulators of cell and tissue differentiation, regulating expression of key downstream genes. OBSERVATIONS: Our laboratory has previously identified several developmentally regulated miRNAs, including miR-206, during critical stages of palatal morphogenesis. The current study reports spatiotemporal distribution of miR-206 during development of the murine secondary palate (gestational days 12.5-14.5). RESULT AND CONCLUSION: Potential cellular functions and downstream gene targets of miR-206 were investigated using functional assays and expression profiling, respectively. Functional analyses highlighted potential roles of miR-206 in governing TGFß- and Wnt signaling in mesenchymal cells of the developing secondary palate. In addition, altered expression of miR-206 within developing palatal tissue of TGFß3-/- fetuses reinforced the premise that crosstalk between this miRNA and TGFß3 is crucial for secondary palate development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/genética , Palato/metabolismo , Animais , Células Cultivadas , Camundongos , MicroRNAs/metabolismo , Palato/embriologia , Via de Sinalização Wnt
17.
PLoS One ; 13(9): e0204119, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30256818

RESUMO

Alcoholic liver disease (ALD), a significant health problem, progresses through the course of several pathologies including steatosis, steatohepatitis, fibrosis, and cirrhosis. There are no effective FDA-approved medications to prevent or treat any stages of ALD, and the mechanisms involved in ALD pathogenesis are not well understood. Bioactive lipid metabolites play a crucial role in numerous pathological conditions, as well as in the induction and resolution of inflammation. Herein, a hepatic lipidomic analysis was performed on a mouse model of ALD with the objective of identifying novel metabolic pathways and lipid mediators associated with alcoholic steatohepatitis, which might be potential novel biomarkers and therapeutic targets for the disease. We found that ethanol and dietary unsaturated, but not saturated, fat caused elevated plasma ALT levels, hepatic steatosis and inflammation. These pathologies were associated with increased levels of bioactive lipid metabolites generally involved in pro-inflammatory responses, including 13-hydroxy-octadecadienoic acid, 9,10- and 12,13-dihydroxy-octadecenoic acids, 5-, 8-, 9-, 11-, 15-hydroxy-eicosatetraenoic acids, and 8,9- and 11,12-dihydroxy-eicosatrienoic acids, in parallel with an increase in pro-resolving mediators, such as lipoxin A4, 18-hydroxy-eicosapentaenoic acid, and 10S,17S-dihydroxy-docosahexaenoic acid. Elucidation of alterations in these lipid metabolites may shed new light into the molecular mechanisms underlying ALD development/progression, and be potential novel therapeutic targets.


Assuntos
Gorduras na Dieta/efeitos adversos , Etanol/efeitos adversos , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Hepatopatias Alcoólicas/metabolismo , Fígado/metabolismo , Oxilipinas/metabolismo , Animais , Consumo Excessivo de Bebidas Alcoólicas/metabolismo , Gorduras na Dieta/administração & dosagem , Modelos Animais de Doenças , Etanol/administração & dosagem , Regulação da Expressão Gênica , Metabolismo dos Lipídeos/genética , Fígado/lesões , Fígado/patologia , Hepatopatias Alcoólicas/patologia , Masculino , Metaboloma , Camundongos Endogâmicos C57BL , Modelos Biológicos , Oxirredução
18.
Biomolecules ; 8(2)2018 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-29587455

RESUMO

The symposium, "Role of Nutrition in Alcoholic Liver Disease", was held at the European Society for Biomedical Research on Alcoholism Congress on 9 October 2017 in Crete, Greece. The goal of the symposium was to highlight recent advances and developments in the field of alcohol and nutrition. The symposium was focused on experimental and clinical aspects in relation to the role of different types of dietary nutrients and malnutrition in the pathogenesis of alcoholic liver disease (ALD). The following is a summary of key research presented at this session. The speakers discussed the role of dietary fats and carbohydrates in the development and progression of alcohol-induced multi-organ pathology in animal models of ALD, analyzed novel nutrition-related therapeutics (specifically, betaine and zinc) in the treatment of ALD, and addressed clinical relevance of malnutrition and nutrition support in ALD. This summary of the symposium will benefit junior and senior faculty currently investigating alcohol-induced organ pathology as well as undergraduate, graduate, and post-graduate students and fellows.


Assuntos
Alcoolismo , Hepatopatias Alcoólicas , Desnutrição , Gorduras na Dieta/metabolismo , Etanol/metabolismo , Humanos , Hepatopatias Alcoólicas/dietoterapia , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/metabolismo
19.
Biomolecules ; 8(1)2018 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-29342874

RESUMO

Both chronic and acute (binge) alcohol drinking are important health and economic concerns worldwide and prominent risk factors for the development of alcoholic liver disease (ALD). There are no FDA-approved medications to prevent or to treat any stage of ALD. Therefore, discovery of novel therapeutic strategies remains a critical need for patients with ALD. Relevant experimental animal models that simulate human drinking patterns and mimic the spectrum and severity of alcohol-induced liver pathology in humans are critical to our ability to identify new mechanisms and therapeutic targets. There are several animal models currently in use, including the most widely utilized chronic ad libitum ethanol (EtOH) feeding (Lieber-DeCarli liquid diet model), chronic intragastric EtOH administration (Tsukamoto-French model), and chronic-plus-binge EtOH challenge (Bin Gao-National Institute on Alcohol Abuse and Alcoholism (NIAAA) model). This review provides an overview of recent advances in rodent models of binge EtOH administration which help to recapitulate different features and etiologies of progressive ALD. These models include EtOH binge alone, and EtOH binge coupled with chronic EtOH intake, a high fat diet, or endotoxin challenge. We analyze the strengths, limitations, and translational relevance of these models, as well as summarize the liver injury outcomes and mechanistic insights. We further discuss the application(s) of binge EtOH models in examining alcohol-induced multi-organ pathology, sex- and age-related differences, as well as circadian rhythm disruption.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas/complicações , Modelos Animais de Doenças , Etanol/administração & dosagem , Hepatopatias Alcoólicas/etiologia , Animais , Consumo Excessivo de Bebidas Alcoólicas/patologia , Etanol/toxicidade , Hepatopatias Alcoólicas/patologia , Camundongos , Ratos
20.
Am J Pathol ; 187(10): 2232-2245, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28923202

RESUMO

Alcoholic liver disease is a major human health problem leading to significant morbidity and mortality in the United States and worldwide. Dietary fat plays an important role in alcoholic liver disease pathogenesis. Herein, we tested the hypothesis that a combination of ethanol and a diet rich in linoleic acid (LA) leads to the increased production of oxidized LA metabolites (OXLAMs), specifically 9- and 13-hydroxyoctadecadienoic acids (HODEs), which contribute to a hepatic proinflammatory response exacerbating liver injury. Mice were fed unsaturated (with a high LA content) or saturated fat diets (USF and SF, respectively) with or without ethanol for 10 days, followed by a single binge of ethanol. Compared to SF+ethanol, mice fed USF+ethanol had elevated plasma alanine transaminase levels, enhanced hepatic steatosis, oxidative stress, and inflammation. Plasma and liver levels of 9- and 13-HODEs were increased in response to USF+ethanol feeding. We demonstrated that primarily 9-HODE, but not 13-HODE, induced the expression of several proinflammatory cytokines in vitro in RAW264.7 macrophages. Finally, deficiency of arachidonate 15-lipoxygenase, a major enzyme involved in LA oxidation and OXLAM production, attenuated liver injury and inflammation caused by USF+ethanol feeding but had no effect on hepatic steatosis. This study demonstrates that OXLAM-mediated induction of a proinflammatory response in macrophages is one of the potential mechanisms underlying the progression from alcohol-induced steatosis to alcoholic steatohepatitis.


Assuntos
Gorduras na Dieta/efeitos adversos , Inflamação/patologia , Ácido Linoleico/efeitos adversos , Fígado/metabolismo , Fígado/patologia , Animais , Araquidonato 15-Lipoxigenase/metabolismo , Consumo Excessivo de Bebidas Alcoólicas , Composição Corporal , Citocinas/metabolismo , Modelos Animais de Doenças , Etanol , Ácidos Linoleicos/metabolismo , Ácidos Linoleicos Conjugados/metabolismo , Macrófagos/metabolismo , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Estresse Oxidativo , Células RAW 264.7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...